Metformin protects against diabetes-induced heart injury and dunning prostate cancer model


BAYRAK B. B., Koroglu P., BULAN N. Ö., Yanardag R.

HUMAN & EXPERIMENTAL TOXICOLOGY, cilt.40, sa.2, ss.297-309, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 40 Sayı: 2
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1177/0960327120947452
  • Dergi Adı: HUMAN & EXPERIMENTAL TOXICOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, BIOSIS, CAB Abstracts, Chimica, CINAHL, EMBASE, Environment Index, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.297-309
  • Anahtar Kelimeler: Diabetes, Dunning prostate cancer, metformin, oxidative stress parameters, heart damage, TOTAL ANTIOXIDANT CAPACITY, OXIDATIVE STRESS, CARDIOVASCULAR-DISEASE, COLORIMETRIC METHOD, XANTHINE-OXIDASE, NITRIC-OXIDE, LIVER-INJURY, PRODUCTS, FAILURE, ENZYMES
  • İstanbul Üniversitesi Adresli: Evet

Özet

In this study, both diabetes and Dunning prostate cancer were induced for the first time in Copenhagen rats in vivo. Thus, the effects of metformin against heart tissue damage of these rats were investigated by biochemical methods. Dunning prostate cancer was induced in Copenhagen rats using high metastatic MAT-LyLu cells. The rats were divided as follows: Control group: only injected with 0.9% NaCl for 14 days; Diabetic group: only injected single dose of streptozotocin (STZ) (65 mg/kg); Cancer group: subcutaneously (s.c) inoculated with 2 x 10(4)MAT-LyLu cells only; Diabetic + cancer (DC) group: inoculated with 2 x 10(4)MAT-LyLu cells and STZ injection, Cancer + metformin (CM) group: injected with metformin for 14 days after Mat-LyLu cells application; Diabetic + cancer + metformin (DCM) group: metformin administered for 14 days together with STZ and Mat-LyLu cells. At the end of the experimental period, heart tissues were taken. Reduced glutathione and total antioxidant status levels in heart tissues were decreased, whereas lipid peroxidation, advanced oxidized protein products, nitric oxide, homocysteine, and reactive oxygen species levels, total oxidant status and catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and xanthine oxidase activities increased in the diabetic, cancer and DC groups. Treatment with metformin reversed these effects. In conclusion, the present study shows that metformin has a protective effect against heart tissue damage in STZ-induced diabetic rats with Dunning prostate cancer.