Effects of epirubicin on barley seedlings


Hamat-Mecbur H., Yilmaz S., Temel A., Sahin K., Gozukirmizi N.

TOXICOLOGY AND INDUSTRIAL HEALTH, cilt.30, sa.1, ss.52-59, 2014 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 30 Sayı: 1
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1177/0748233712451768
  • Dergi Adı: TOXICOLOGY AND INDUSTRIAL HEALTH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.52-59
  • İstanbul Üniversitesi Adresli: Evet

Özet

Epirubicin (EPI) is one of the anthracycline antibiotics, which is used in cancer chemotherapy. It inhibits DNA and RNA synthesis and causes cell death by DNA cleavage and production of free radicals. In this study, phytotoxicity of EPI was investigated on root and shoot growth, antioxidant enzymes and retrotransposons' movements in 10- and 20-day-old barley seedlings. Mature embryos of barley were germinated on Murashige and Skoog medium supplemented with 250 and 500 mu g/ml EPI. Our results showed that EPI treatment significantly inhibited shoot and root growth when compared with control group. Treatment with 250 and 500 mu g/ml of EPI reduced shoot length in the 10-day-old plants by approximately 1.5- and 2-fold, respectively; the same treatments reduced total root length by 2- and 4-folds, respectively. However, the shoot and root lengths of 20-day-old plants were observed to be more affected by EPI-treatment. A 500-mu g/ml concentration decreased total protein levels and peroxidase (EC 1.11.1.11) activity and increased superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) activities. To investigate the effect of EPI on the movements of BARE-1, SUKKULA and BAGY2 retrotransposons, inter-retrotransposon amplified polymorphism technique was performed. While some polymorphic polymerase chain reaction bands were observed for BARE-1, no polymorphism was identified in SUKKULA and BAGY2 movements. To our knowledge, this is the first report showing phytotoxic effects of EPI on plant germination and retrotransposons' movements.