The Effects of Cross-Linking Agents on the Mechanical Properties of Poly (Methyl Methacrylate) Resin


Creative Commons License

CEYLAN G., EMİK S., YALÇINYUVA T., Sünbüloğlu E., Bozdağ S. E., Unalan F.

POLYMERS, cilt.15, sa.10, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 10
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/polym15102387
  • Dergi Adı: POLYMERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, Food Science & Technology Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • İstanbul Üniversitesi Adresli: Evet

Özet

Cross-linking agents are incorporated into denture base materials to improve their mechanical properties. This study investigated the effects of various cross-linking agents, with different cross-linking chain lengths and flexibilities, on the flexural strength, impact strength, and surface hardness of polymethyl methacrylate (PMMA). The cross-linking agents used were ethylene glycol dimethacrylate (EGDMA), tetraethylene glycol dimethacrylate (TEGDMA), tetraethylene glycol diacrylate (TEGDA), and polyethylene glycol dimethacrylate (PEGDMA). These agents were added to the methyl methacrylate (MMA) monomer component in concentrations of 5%, 10%, 15%, and 20% by volume and 10% by molecular weight. A total of 630 specimens, comprising 21 groups, were fabricated. Flexural strength and elastic modulus were assessed using a 3-point bending test, impact strength was measured via the Charpy type test, and surface Vickers hardness was determined. Statistical analyses were performed using the Kolmogorov-Smirnov Test, Kruskal-Wallis Test, Mann-Whitney U Test, and ANOVA with post hoc Tamhane test (p <= 0.05). No significant increase in flexural strength, elastic modulus, or impact strength was observed in the cross-linking groups compared to conventional PMMA. However, surface hardness values notably decreased with the addition of 5% to 20% PEGDMA. The incorporation of cross-linking agents in concentrations ranging from 5% to 15% led to an improvement in the mechanical properties of PMMA.