HIGH-RESOLUTION GAMMA-RAY SPECTROSCOPY WITH ELIADE AT THE EXTREME LIGHT INFRASTRUCTURE


SODERSTROM P., Suliman G., UR C. A., BALABANSKI D., BECK T., Capponi L., ...Daha Fazla

ACTA PHYSICA POLONICA B, cilt.50, sa.3, ss.329-338, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50 Sayı: 3
  • Basım Tarihi: 2019
  • Doi Numarası: 10.5506/aphyspolb.50.329
  • Dergi Adı: ACTA PHYSICA POLONICA B
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.329-338
  • İstanbul Üniversitesi Adresli: Evet

Özet

The Extreme Light Infrastructure is a major European undertaking with the aim of constructing a set of facilities that can produce the worlds highest intensity laser beams as well as unique high-brilliance, narrow-bandwidth gamma-ray beams using laser-based inverse Compton scattering. The latter will be one of the unique features of the facility in Bucharest-Magurele, Romania, where the scientific focus will be towards nuclear physics and nuclear photonics both with high intensity lasers and gamma beams individually, as well as combined. One of the main instruments being constructed for the nuclear physics and applications with high-brilliance gamma-beams research activity is the ELIADE gamma-ray detector array. This array consists of eight segmented HPGe clover detectors as well as large-volume LaBr3 detectors. The nuclear physics topics are expected to cover a large range including, but not limited to, properties of pygmy resonance and collective scissors mode excitations, parity violation in nuclear excitations, and matrix elements for neutrinoless double-beta decay. However, the uniqueness of the environment in which ELIADE will operate presents several challenges in the design and construction of the array. Here, we discuss some of these challenges and how we plan to overcome them, as well as the current status of implementation.