A comparison of anionic and cationic dye removal efficiency of industrial bauxite waste red-mud


Atun G., ORTABOY SEZER S., TÜZÜN E., TÜRKER ACAR E.

JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, cilt.44, sa.1, ss.144-156, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 44 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/01932691.2021.1931287
  • Dergi Adı: JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, BIOSIS, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Food Science & Technology Abstracts, INSPEC, International Pharmaceutical Abstracts, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.144-156
  • Anahtar Kelimeler: acid dye, basic dye, Red mud, sorption, surface charge, water treatment
  • İstanbul Üniversitesi Adresli: Evet

Özet

Sorption characteristics of the acid-activated bauxite waste red-mud for Nylomine-Blue and Methylene-Blue were investigated to predict its potential removal ability for anionic-di-anthraquinone and cationic-thiazine-dyes, respectively. Surface characteristics of the red-mud were examined using atomic-force-microscopy, diffuse-reflectance-Fourier-transform, and X-ray-diffraction spectroscopy techniques. Kinetic data obtained at four different temperatures fit well to the pseudo-second-order and homogeneous-surface-diffusion models. The experimental Nylomine-Blue sorption capacity (0.020 mmol/g) is higher than that of Methylene-Blue (0.012 mmol/g) at 288 K but they change oppositely with the temperature and attain 0.013 and 0.043 mmol/g at 318 K, respectively. Experimental equilibrium data for Methylene-Blue and Nylomine-Blue are well predicted by the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm equations. The mean-sorption-energies fall into the ion-exchange range for Methylene-Blue but electrostatic-attraction-forces play a more important role in Nylomine-Blue sorption. These mechanisms were correlated to the pH changes in the sorption process and the differences in the diffuse-reflectance-Fourier-transform spectra of dye-loaded sorbents. The atomic-force-microscopy topography and phase images revealed that the hematite and sodalite appear as hills on the red-mud surface but gibbsite and calcite minerals cover the valleys. The Methylene-Blue molecules are sorbed by ion-exchange in the positively-charged-valleys in dilute solutions but Nylomine-Blue is sorbed specifically on overall surface in whole concentration range.