The Investigation of the Effect of a-Tomatine as a Novel Matrix Metalloproteinase Inhibitor on the Bond Strength of Sound and Eroded Dentine through In Vitro and In Silico Methods


Creative Commons License

Ucuncu M. K., Ortaakarsu A. B., BATU Ş., YILDIZ E.

Applied Sciences (Switzerland), cilt.13, sa.18, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 18
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/app131810322
  • Dergi Adı: Applied Sciences (Switzerland)
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: a-tomatine, adhesion, chlorhexidine, eroded dentin, matrix metalloproteinase, molecular docking
  • İstanbul Üniversitesi Adresli: Evet

Özet

This study aims to examine the effect of a-tomatine, a new matrix metalloproteinase inhibitor for dentistry, as a surface pretreatment on the bonding strength of different types of dentine via in vitro and in silico methods. The binding efficacy of both a-tomatine and chlorhexidine to MMP-2, 8, and 9 was evaluated through molecular docking and dynamics analyses. For microtensile testing (µTBS), specimens (n = 84) were categorized into two groups based on the type of dentin: sound (SD) and eroded (ED) (n = 42). Each group was further divided into three subgroups according to the utilization of surface pretreatment agents (1.5 µM of tomatine, 2% chlorhexidine (CHX), and the control). Composite buildups were gradually created via a three-step etch-and-rinse technique. The specimens were sectioned into sticks and subsequently subjected to µTBS after aging for either 24 h (n = 7) or 6 months (n = 7). The data were subjected to analysis using two-way ANOVA with a Bonferroni correction post hoc test. The significance level was evaluated at a minimum of p < 0.05. According to molecular docking and dynamic simulation analyses, a-tomatine exhibits a higher affinity for MMP-2, -8, and -9 enzymes compared to chlorhexidine. Lower µTBS values were observed in all ED groups compared to the SD groups. Following 24-h aging, the CHX application in both the SD and ED groups achieved lower µTBS values compared to the control group (p < 0.01 and p > 0.05, respectively). The most favorable results were consistently achieved across all the subgroups subjected to a-tomatine applications (p < 0.05). a-tomatine is a more effective MMP inhibitor than chlorhexidine in terms of preserving bond strength values over time and its capacity to bind to MMP-2,8, and 9 for inhibition.