Number Theory I Homework Questions

1. Given that 3 is a primitive root of 43 , find
(a) all positive integers less than 43 having order 6 modulo 43;
(b) all positive integers less than 43 having order 21 modulo 43.
2. How many incongruent primitive does 50 have?
3. Suppose r is a primitive root of 50. Find all incongruent primitive roots of 50 in terms of r.
4. Suppose r is a primitive root of 50 . Show that r^{3} is also a primitive root of 50 and find all incongruent primitive roots of 50 in terms of r^{3}.
5. Suppose r is a primitive root of 50. Find all incongruent integers having order 10.
6. How many positive integers x are there such that $\operatorname{ord}_{50}(x)=15$
7. Let $a \in \mathbb{Z}$ and suppose r is a primitive root of 50 and $\operatorname{ind}_{r} a=8$. Then $\operatorname{ord}_{50} a=$?
8. Find all integers x such that $100 \leq x \leq 500$ and $4|x, 3| x+1,5 \mid x+3$
9. Find all integers x such that $100 \leq x \leq 300, \quad 43!x=1 \bmod (51)$
10. Find the smallest positive integers x such that $65!x=5 \bmod (71)$
11. Find the value of the Legendre symbol $\left(\frac{71}{101}\right)$
12. Is the quadratic congruence $x^{2} \equiv 172 \bmod (101)$ solvable?
13. Is 273 a quadratic residue of 101 ?
14. How many incongruent solutions of the linear congruence $6 x \equiv 12 \bmod (33)$ are there? Solve this congruence.
15. The following is a table of indices for the prime 17 relative to the primitive root 3:

| a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ind $_{3} a$ | 16 | 14 | 1 | 12 | 5 | 15 | 11 | 10 | 2 | 3 | 7 | 13 | 4 | 9 | 6 | 8 |

With the aid of this table, solve the congruences
(a) $x^{12} \equiv 13 \bmod (17)$
(b) $8 x^{5} \equiv 10 \bmod (17)$
(c) $9 x^{8} \equiv 8 \bmod (17)$
(d) $7^{x} \equiv 7 \bmod (17)$
16. Construct the table of indices for the prime 17 relative to the primitive root 10 .
17. Determine the integers $a(1 \leq a \leq 12)$ such that the congruence
$a x^{4} \equiv b \bmod (13)$ has a solution for $b=2,5$, and 6 .
18. Decide whether or not the following quadratic conqruence equation are solvable. If solvable find the solutions.
(a) $x^{2}+5 x+13 \equiv 3 \bmod (11)$
(b) $3 x^{2}+5 x+15 \equiv 4 \bmod (11)$
(c) $x^{2}+5 x+13 \equiv 3 \bmod (11)$

Reference: David M. Burton, Elementary Number Theory.

