Number Theory I Homework Questions

1. Let *a*,*b* be non-zero integers. Show that gcd(b,a) = gcd(-b,a) = gcd(b,-a) = gcd(a,b+ax), lcm(b,a) = lcm(-b,a) = lcm(b,-a) ($\forall x \in \mathbb{Z}$)

2. Let $a, b, d \in \mathbb{Z}$ and suppose that $d \mid a$, $d \mid b$ and 0 < d. Show that $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{1}{d}gcd(a, b)$

3. Show that

$$a \mid b \Leftrightarrow \gcd(a,b) = |a|$$

for all non-zero integers a, b.

4. Show that 4 | n(n+1)(n+2)(n+3) for all integers n

5. Show that 12 | n(n+1)(n+2)(n+3) for all integers n

6. Show that 6|n(n-5)(n+14) for all integers n

7. Let $a,b,c \in \mathbb{Z}$, $a,b \neq 0$. Show that If $a \mid c$ and $b \mid c$ then lcm(a,b) divides c.

8. Show that the integers q and r in Euclid's division are unique. In other words, if aq + r = b = aq' + r', $0 \le r, r' < a$ then r = r', q = q'

9. Let $a, b \in \mathbb{Z}$ and suppose that gcd(a,b) = 1. Then show that $\pi(a-b) \cap \pi(a+b) = \{2\}$ or $\pi(a-b) \cap \pi(a+b) = \emptyset$.

10. How many elements does the set $\{\gcd(a, a+12): a \in \mathbb{Z}\}$ have? List all elements of this set.

11. Decide whether or not the following is true:

"Let a,b be non-zero integers. Then $\pi(\gcd(a,b)) = \pi(a) \cap \pi(b)$."

13. Decide whether or not the following is true:

"Let a,b and d be non-zero integers. If
$$\pi(d) = \pi(a) \cap \pi(b)$$
 then $d = \gcd(a,b)$."

14. Decide whether or not the following is true:

"Let a, b and d be integers. If d | a - b then $d | a^k - b^k$ for all positive integers k".

15. Decide whether or not the following is true:

"Let a, b and d be integers. If $d | a^k - b^k$ for some positive integer k, then d | a - b".

16. Show that if $2^n - 1$ is prime then *n* is also prime.

17. Show that every odd integer is either of the form 4k + 1 or 4k + 3

- 18. Show that the square of any integer is either of the form 3k or 3k+1.
- 19. Show that $3 \nmid a^2 2$ for all integers *a*.
- 20. Show that the cube of any integer is either of the form 9k, 9k+1 or 9k+8.
- 21. Show that $7 | 2^{3n} 1$ for any positive integer *n*
- 22. Show that $8|3^{2n}+1$ for any positive integer *n*.
- 23. Show that the only prime of the form $n^3 1$ is 7.
- 24. Show that if gcd(a,b)=1 and $c \mid a$ then gcd(c,b)=1.

I also recommend all students taking this course to solve the chapter end problems in the book "Elemantary Number Theory" by David M. Burton.