Chapter 3

Motion 1n Two or Three
Dimensions



Learning Goals for Chapter 3

Looking forward at ...

* how to use vectors to represent the position and velocity of a
particle in two or three dimensions.

* how to find the vector acceleration of a particle, and how to
interpret the components of acceleration parallel to and
perpendicular to a particle’s path.

* how to solve problems that involve the curved path followed
by a projectile.

* how to analyze motion in a circular path, with either constant

speed or varying speed.

* how to relate the velocities of a moving body as seen from
two different frames of reference.
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Introduction

 What determines where a batted baseball lands?

* How do you describe the motion of a roller coaster car along
a curved track or the flight of a circling hawk?

* Which hits the ground first, a baseball that you simply drop
or one that you throw horizontally?

* We need to extend our
description of motion to @ {""‘\
two and three dimensions. 4 » / n

gt
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Position vector

* The position vector from y
the origin to point P has Position P of a particle
components x, y, and z. at a given time has

Y ¢. _ coordinates x, y, z.

Position vector ofa e % '.'-""""--:- ...........

particle at a given instant***s 22 — ;Y’i + y] + Zk Coordinates of

. _ _ . _* particle’s position
Unit vectors in x-, y-, and z-directions* e suu.ee Tosesesst®
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Displacement

Position vector of a et e,
particle at a given instant***» 2 — xt + )’] + Zk Coordinates of

, . &  particle’s position
Unit vectors in x-, y-, and z dnecllons--' ---------- Vaaanesent?

During a time interval Ar the particle moves from P;, where its position
vector is 7y, to P5, where its position vector is 7. The change in position (the dis-
placement) during this interval is AF =7, — F; = (x, —x)1 + () — y1)] +

(22 — z1)k. » :
o y Position at time 7,
7
AP2 P A7
2 &l
vav - At
\
Displacement
v....vector AF points
v from P, to P,.
19 ’ Pl
o %, oz g
Re " Position at time ¢,
I \
N X
Particle’s path
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Velocity

* The average velocity between two points is the displacement
divided by the time interval between the two points, and it
has the same direction as the displacement.

Change in lln particle’s position vector

--------------
---------
---------

Average velocity vector ., = = = Final position
i S W Ar I, — Iy ; l
of a particle during time V.. = — = ——— minus initial
; 3 o av A - s
interval from 1, to t, JAYS Ih — 4 position
. ... ’-—' 4
Time interval Final time minus initial time

 Instantaneous velocity (a.k.a. “velocity”) is the
instantaneous rate of change of position with time:

The 1 € ‘ o) 4 tv .., = =
I'he mst‘?ntanq)us velocity e Ar dr
vector of a particle ... v = lim
L Ar—0 At dr
r‘.
... equals the limit of its average \'LI()L”_\ ... and equals the instantaneous rate
vector as the time interval approaches zero ... of change of its position vector.
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Instantaneous velocity

* The instantaneous velocity 1s the instantaneous rate of
change of position vector with respect to time.

Each component of a particle’s instantaneous velocity vector ...

" dx dy _dz

UE=— e Do) ==t v
: - dt Y - dt < - dt
.. equals the inst: mt aneous rate of (,h ange of its LOI‘ICSpOIldlI]U coordinate.
* The instantaneous VCIOCity The instantaneous velocity vector v
of a particle is always y 1s always Eangcnt to the path.
tangent to its path.

| . Particle’s path in

R dr dx . dy,\ dz » " the xy-plane
v=—"=—"1+—"]+ &k N
dr  dt dt dt |
| Uy
> tane = —
Bl =v="Vv2+v2+0v,? Ox

Of v v"and v, are the x- and y-
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EXAMPLE 3.1

CALCULATING AVERAGE AND INSTANTANEOUS VELOCITY

A robotic vehicle, or rover, is exploring the surface of Mars. The
stationary Mars lander 1s the origin of coordinates, and the sur-
rounding Martian surface lies in the xy-plane. The rover, which we
represent as a point, has x- and y-coordinates that vary with time:
x=20m — (0.25 m/s*)¢*
y = (1.0m/s)t + (0.025 m/s*)s’

(a) Find the rover’s coordinates and distance from the lander at
t = 2.0s. (b) Find the rover’s displacement and average velocity
vectors for the interval t = 0.0s to t = 2.0 s. (¢) Find a general
expression for the rover’s instantaneous velocity vector v. Express
v at t = 2.0 s in component form and in terms of magnitude and

direction.
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SN |JRIXNE CALCULATING AVERAGE AND INSTANTANEOUS VELOCITY

IDENTIFY and SET UP: This problem involves motion in two di-
mensions, sO we must use the vector equations obtained in this
section. Figure 3.5 shows the rover’s path (dashed line). We’ll use
Eq. (3.1) for position 7, the expression Ar¥ = r, — r; for displace-
ment, Eq. (3.2) for average velocity, and Egs. (3.5), (3.6), and (3.7)
for instantaneous velocity and its magnitude and direction.

3.5 Atr = 0.0 s the rover has position vector 7y and instantaneous
velocity vector U. Likewise, 7| and U; are the vectors at
t = 1.0's; ¥, and v, are the vectors at t = 2.0s.
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EXECUTE: (a) At = 2.0 s the rover’s coordinates are
x=20m — (0.25m/s*)(2.0s)> = 1.0m
y = (1.0m/s)(2.0s) + (0.025m/s’)(2.0s)’ = 22m

The rover’s distance from the origin at this time is

r=Vxr+y2=V(1.0m? + (22m)? = 24m

(b) To find the displacement and average velocity over the given
time interval, we first express the position vector F as a function of
time 7. From Eq. (3.1) this is

F=xi+y]
= [20m — (0.25 m/s*)r*]7
+ [(1.0m/s)t + (0.025 m/s>)*] ]

Att = 0.0 s the position vector r is

o= (2.0m)z + (0.0 m)J
From part (a), the position vector 7, at t = 2.0's is

r, = (1.0m)7 + (2.2 m)]
The displacement from ¢t = 0.0 s to r = 2.0 s is therefore

AF =7, — Fy = (1.0m)i + (22m)j — (20 m)i

(-1.0m)i + (2.2m)j

_ A7 (1Om)i + (22m)]
T At 20s-00s
= (—0.50m/s)7 + (1.1 m/s)J]

-
leV



EXAMPLE 3.1

CALCULATING AVERAGE AND INSTANTANEOUS VELOCITY

(¢) From Eq. (3.4) the components of instantaneous velocity Figure 3.5 shows the direction of velocity vector 5, which is at an

are the time derivatives of the coordinates:

d.
Uy = = (—0.25 m/s%)(2¢)
dt
_b_ 3y(3,2
Oy = 1.0m/s + (0.025 m/s”)(3t7)

Hence the instantaneous velocity vector is
U=ud+ )
= (—0.50 m/s*)ri + [1.0 m/s + (0.075 m/s*)r*] ]
At t = 2.0 s the velocity vector v, has components
vy, = (—0.50 m/s*)(2.0s) = —1.0m/s
vay = 1.0m/s + (0.075m/s’)(2.0s)> = 1.3 m/s

The magnitude of the instantaneous velocity (that is, the speed) at

t =20sis
A/ 2 2
sz + vz.‘r

= 1.6 m/s

= V(=10m/s) + (1.3m/s)?

Uy =
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angle « between 90° and 180° with respect to the positive x-axis.
From Eq. (3.7) we have

Uy 1.3m/s
arctan— = arctan—————— =
Uy —1.0m/s

—52°
This is off by 180°; the correct value is « = 180° — 52° = 128°,
or 38° west of north.

EVALUATE: Compare the components of average velocity from
part (b) for the interval from 7= 0.0s to t = 2.08 (Vyyx =
—0.50 m/s, v,y., = 1.1 m/s) with the components of instanta-
neous velocity att = 2.0’ s from part (¢) (v, = —1.0m/s, Uy =
1.3 m/s). Just as in one dimension, the average velocity vector.iﬁav
over an interval is in general not equal to the instantaneous
velocity U at the end of the interval (see Example 2.1).

Figure 3.5 shows the position vectors 7 and instantaneous veloc-
ity vectors U at t = 0.0's, 1.0's, and 2.0 s. (Calculate these quanti-
ties fort = 0.0 sand ¢t = 1.0 s.) Notice that U is tangent to the path
at every point. The magnitude of U increases as the rover moves,
which means that its speed is increasing.



Acceleration

Now let’s consider the acceleration of a particle moving in space. Just as for
motion in a straight line, acceleration describes how the velocity of the particle
changes. But since we now treat velocity as a vector, acceleration will describe
changes in the velocity magnitude (that is, the speed) and changes in the direc-
tion of velocity (that is, the direction in which the particle is moving).

* Acceleration describes how the velocity changes.

—

0>
’—“—>

’ This car accelerates by slowing
while rounding a curve. (Its
instantaneous velocity changes in
both magnitude and direction.)

© 2016 Pearson Education, Ltd.



Average acceleration

* The change 1n velocity between two points 1s determined by
vector subtraction.

To find the car’s average acceleration between
P, and P,, we first find the change in velocity
Av by subtracting v, from v,. (Notice that

v, + Av = U,.)
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Acceleration

* We define the average acceleration as the change 1n velocity
divided by the time interval:

Change in the particle’s velocity

Average acceleration --.., ¥ » » o
: : AD U, — U Final velocity

vector of a particle A _, v 2 1 . R

R a. = = minus initial
durine time interval av At oM .
; 15 > 2 ] velocity
fromt, to 1, A n

[Nme interval Final time minus initial time

The average acceleration has the same direction
as the change in velocity, Av.
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Instantaneous acceleration

* The velocity vector 1s always tangent to the particle’s path,
but the instantaneous acceleration vector does not have to be
tangent to the path.

To find the instantaneous g, 5
. acceleration =
* If the path is curved, the datP; .. P

acceleration points toward & .. we take the limit of @,
: ¢ T-..as P, approaches P ...
the concave side of the path. S Sl

; >

-

- . —
» ... meaning that Av and At

approach 0.

a

» _ q:. AD

W a = lim —

/ Ar—0 At

-+ Acceleration points to
concave side of path.

; o

© 2016 Pearson Education, Ltd.



Acceleration

 Instantaneous acceleration (a.k.a. “acceleration”) is the
instantaneous rate of change of velocity with time:

The instantaneous --... n "
: ‘<, . Av dv
acceleration vector a=lm —=—
of a particle ... Ly Ar—0 At alt
.. equals the limit of its average acceleration .. and equals the instantaneous rate
vector as the time interval approaches zero ... of change of its velocity vector.
Only if the trajectory is -7

a straight line ...

- #” ... is the acceleration
tangent to the trajectory.
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Components of acceleration

Each component of a particle’s instantaneous acceleration vector ...
“ dv 7 dvy b dv.
a of : S —-' a- .
X <
= dt ~dt < dt

... equals the instantaneous rate of change of its corresponding velocity component.

L
a }\ e

-

* Shooting an arrow 1s an example of an
acceleration vector that has both x- and
y-components.

WKl

a=al+a,)+ ak

- dl—; dU " A dv\’ A dv A

a = = xl + —] + _Zk
dt dt dt dt
d*x a'2y d*z

a, = a, = — a, = —
dr? S O dt
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DN E CALCULATING AVERAGE AND INSTANTANEOUS ACCELERATION

Let’s return to the motions of the Mars rover in Example 3.1.
(a) Find the components of the average acceleration for the inter-
val t = 0.0s to r = 2.0 s. (b) Find the instantaneous acceleration

atr = 2.0s.

SOLUTION

IDENTIFY and SET UP: In Example 3.1 we found the components

of the rover’s instantaneous velocity at any time f:

d

v, = j; — (—0.25 m/s2)(2r) = (—0.50 m/s?)t
_dy 3\ (2.2

Uy == 1.0 m/s + (0.025 m/s”)(3t")

= 1.0m/s + (0.075 m/s)r*
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EXECUTE: (a) In Example 3.1 we found that at t = 0.0 s the velocity
components are

vy = 0.0m/s v, = 1.0m/s
and that at r = 2.0 s the components are
v, = —1.0m/s vy = 1.3 m/s

Thus the components of average acceleration in the interval
t =00stor = 2.0sare

Av, —1.0m/s — 0.0m/s

= = = — ‘2
avr = A 20s — 0.0 050 m/s
Avy, 13 m/s — 1.0m/s
oy = ——— = = 0.15 m/s*
Gavy = 6y 205 — 0.0 m/s
(b) Using Egs. (3.10), we find
dv, dv,,
a, = 7; = -050m/s*>  a, = = (0.075 m/s®)(21)



EXAMPLE 3.2

CALCULATING AVERAGE AND INSTANTANEOUS ACCELERATION

Hence the instantaneous acceleration vector @ at time f is
d=ad+a,j=(—050m/s*)i + (0.15m/s’){]

At t = 2.0 s the components of acceleration and the acceleration
vector are

a, = —0.50 m/s* » = (0.15m/s%)(2.05) = 0.30 m/s*
a = (—0.50 m/s*)7 + (0.30 m/s?)j
The magnitude of acceleration at this time is

a = \/ax2 + a\,2

= V(~0.50 m/s%)% + (0.30 m/s?)2 = 0.58 m/s>

A sketch of this vector (Fig. 3.9) shows that the direction angle 3
of @ with respect to the positive x-axis is between 90° and 180°.
From Eq. (3.7) we have

a, 0.30 m/s?

arctan— = arctan o —31°
Ay —0.50 m/s

Hence B = 180° + (—31°) = 149°.

© 2016 Pearson Education, Ltd.

0.5

0.5



Parallel and perpendicular components of
acceleration

* Velocity and acceleration vectors for a particle moving
through a point P on a curved path with constant speed

(@) Acceleration parallel to velocity
Changes only magnitude s
: Av
of velocity: speed changes;
direction doesn’t.

aj
\A\\'\ .

(b) Acceleration perpendicular to velocity // [WA

% o
Changes only direction of 5 AT / 2 .x:&}_a
velocity: particle follows /
curved path at constant / /
speed.

I Normal at P
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Parallel and perpendicular components of
acceleration

* Velocity and acceleration vectors for a particle moving
through a point P on a curved path with increasing speed

... acceleration points
ahead of the normal.

> '»;.;‘: - - L’.°.
. > i
= ‘\‘--\: ah a

Normal at P
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Parallel and perpendicular components of
acceleration

* Velocity and acceleration vectors for a particle moving
through a point P on a curved path with decreasing speed

.. acceleration points
behind the normal.

Normal at P
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o\ (eI 1IVAND N[ AR M ACCELERATION OF A SKIER

A skier moves along a ski-jump ramp (Fig. 3.14a). The ramp is
straight from point A to point C and curved from point C onward.
The skier speeds up as she moves downhill from point A to
point E, where her speed is maximum. She slows down after pass-

ing point E. Draw the direction of the acceleration vector at each
of the points B, D, E, and F.

(b) ~
A ¥
AN
AN
\\
Direction N
of motion LY
AN
Q B\
. Normal at €
N Normal at D i Normal at

AN / | \

\\ / \
N\ -
) ! J7 a \

N a
CNl 4 a\,
\\ //
D F D ~———é-——-
E £ F
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Projectile motion

* A projectile 1s any body given an 1nitial velocity that then
follows a path determined by the effects of gravity and air
resistance.

* Begin by neglecting resistance and the curvature and rotation
of the earth.

* A projectile moves in a vertical plane that
contains the initial velocity vector v,

e Its trajectory depends only on v and
on the downward acceleration due to gravity.

Bl ~~< Trajectory
~

a N\
é N
N\
a,= 0, a,~=—g Mg

\
“v: X
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The x- and y-motion are separable

* The red ball 1s dropped at the same time that the yellow ball
1s fired horizontally.

et
p \
L . = Y
:

* The strobe marks equal time
intervals.

* We can analyze projectile motion

as horizontal motion with constant The fmagte
. . . . of the balls

velocity and vertical motion with e

constant acceleration: atcqis

time intervals.

a,=0anda,=-g.
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Projectile motion

* If air resistance 1s negligible, the trajectory of a projectile 1s a
combination of horizontal motion with constant velocity and
vertical motion with constant acceleration.

At the top of the trajectory, the projectile has zero vertical

velocity (v, = 0), but its vertical acceleration 1s still —g
vy U »
—_,_—b*\\ -

/
~
<
T -_;:—
.——————————c:::.-—-—
o~
>~

\'cnm;nll}. the PI'I‘}CQIIiC
3, 1S in constant-acceleration
motion in response to the
earth’s gravitational pull
Thus 1ts vertical velocity
changes by equal amounts

Voy |
"0y during equal time intervals.

Uy = Doy

X = Xo T Ugyt

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration

IS zero, so it moves equal x-distances in equal time intervals.

Uy = U()y — g1

_ 1 _.2
y = Yo t Upyt — 38t
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Projectile motion - Initial velocity

* The 1nitial velocity

components of a ; R e .

projectile (such as a Y0 g “Sa
kicked soccer ball) are / .,
related to the initial 0

speed and initial angle.

Uogy = UoSI &g

TR _
¢ T Vox = UYgCO3 &y
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The equations for projectile motion

* If we set x, =y, = 0, the equations describing projectile
motion are shown below:

i (90 cos a1
Coordinates at time r of 0,

a projectile (positive Speed Direction ™
y-direction 1s upward, ...
andx =y=0atr=0) °

Time
att =0 atf=0 _ 7, £

y = (50 sin 30) — 1er?

~x T Yo F95eq ™ Acceleration
Velocity components at " - due to gravity:
time 7 of a projectile ..~ i Speed Direction Note g > 0.
(positive y-direction .., att =0 atr=0 '
is upward) " I i o Thme

U, = VUpSIn @p — gt
_ _ 8 2
y = (tanag)x 5 X
2Uo COS
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NI N. W A BODY PROJECTED HORIZONTALLY

A motorcycle stunt rider rides off the edge of a cliff. Just at the
edge his velocity is horizontal, with magnitude 9.0 m/s. Find the
motorcycle’s position, distance from the edge of the cliff, and
velocity 0.50 s after it leaves the edge of the cliff.

x = voet = (9.0m/s)(0.50s) = 4.5m
9 At this point, the bike and |

rider become a projectile. y=—1gr = —1(9.80 m/s?)(0.505)> = —12m

.
.

.

y
D
5
5
5
g
o
‘
A

O

r=Vxt+ y? = \/(4.5 m)? + (—1.2m)> =47m

vy = Vg = 9.0m/s

v, = —gt = (—9.80 m/s*)(0.50s) = —4.9m/s

v=uva+ v, = (9.0m/s)i + (—4.9m/s)]
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OGN HEIGHT AND RANGE OF A PROJECTILE I: A BATTED BASEBALL

A batter hits a baseball so that it leaves the bat at speed ? +27
1_.

vo = 37.0m/s at an angle oy = 53.1°. (a) Find the position of 12005 _» ——>V

the ball and its velocity (magnitude and direction) at ¢t = 2.00 s. x=1 /{ T

(b) Find the time when the ball reaches the highest point of its /// \\\

flight, and its height A at this time. (¢) Find the horizontal range Yo=370 /s y="1 h=1 M
R—that is, the horizontal distance from the starting point to where 7l l N
the ball hits the ground—and the ball’s velocity just before it hits. 5 o553.1° ™

Vox = Upcosag = (37.0 m/s)cos53.1° = 22.2 m/s

vy, = Vosinag = (37.0 m/s)sin53.1° = 29.6 m/s f = ? = 580 m/;z =3.02s

x = vgyt = (22.2m/s)(2.00s) = 444 m h = voty — 3811

Yy = vyt — 38 = (29.6 m/s)(3.02s) — 3(9.80 m/s?)(3.025)> = 44.7m
= (29.6 m/s)(2.00s) — 3(9.80 m/s?)(2.005)* = 39.6 m

Uy = Ugy = 22.2m/s

v, = Voy — gt = 29.6m/s — (9.80 m/s?)(2.00s) = 10.0m/s R = vo,ty = (22.2m/s)(6.04s) = 134 m

vy = Ugy — gl = 29.6m/s — (9.80 m/s?)(6.04 s)
—29.6 m/s

v="\Vv?2+ vy = \/(22.2 m/s)> + (10.0 m/s)* = 24.4 m/s

10.0 m/s
222 m/s

a = arctan( ) = arctan(0.450 = 24.2°
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The effects of air resistance

* Calculations become more complicated.
* Acceleration 1s not constant.
* Effects can be very large.

* Maximum height and

y(m) Baseball’s initial velocity:
range decrease.

100 vy = 50 m/s, ay = 53.1°
* Trajectory 1s no longer ¢ _/
a parabola.
| | | | ] |
0 100\ 200 \ 300 ™
_50 &=
—100 [~

With air No air
resistance resistance
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Motion in a circle

* Uniform circular motion is constant speed along a circular
path.

K /- Acceleration 1s exactly
L_, perpendicular to velocity;
/ a no parallel component

/ \

/ r A\

To center of circle
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Motion in a circle

* Car speeding up along a circular path

Component of acceleration parallel to velocity:
Changes car’s speed

/
I’ Component of acceleration perpendicular to
I velocity: Changes car’s direction
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Motion in a circle

* Car slowing down along a circular path

Component of acceleration parallel
to velocity: Changes car’s speed
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Acceleration for uniform circular motion

|Av As v
4 o 1
= or |Av| = —As
Ul R R
|A15| U\ As
Qoy — e e
& At R At
- Ul As Ul lim As
a = 11m
A—0 R At R M—0 At
Magnitude of acceleration -..,, v% Speed of object
. P : A T it
of an object in rad R «-Radius of object’s

uniform circular motion circular path
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(@) A particle moves a distance As at
constant speed along a circular path.

(b) The corresponding change in velouty and
average acceleration ;

These two triangles
are similar.

o
.
o
.
.
1 2o
..........




Acceleration for uniform circular motion

* For uniform circular motion,

: . _ i
the instantaneous acceleration S
always pOHltS tOWﬂI'd the The instantaneous acceleration
center of the circle and 1s o in uniform circular motion
. A r  always points toward the
called the centripetal ;o e S
° rac
acceleration. ! \
I
, l 0
* The magnitude of the 1

acceleration is a4 = V?/R.

* The period T 1s the time for one revolution, and
a.,=4m’R/T?.

© 2016 Pearson Education, Ltd.



SOV IREN CENTRIPETAL ACCELERATION ON A CURVED ROAD

An Aston Martin V8 Vantage sports car has a “lateral acceleration”
of 0.96g = (0.96)(9.8 m/s*) = 9.4 m/s>. This is the maximum
centripetal acceleration the car can sustain without skidding out
of a curved path. If the car is traveling at a constant 40 m/s (about

89 mi/h, or 144 km/h) on level ground, what is the radius R of the
tightest unbanked curve it can negotiate?

v2 (40 m/s)?
R = - 5~ = 170 m (about 560 ft)
Arad 9.4 m/s

GNP E CENTRIPETAL ACCELERATION ON A CARNIVAL RIDE

Passengers on a carnival ride move at constant speed in a horizon-
tal circle of radius 5.0 m, making a complete circle in 4.0 s. What
is their acceleration?

T 4.
472(5.0 m) , Os
s— = 12m/s” = 1.3¢g
(4.0s)

Urad —
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Uniform circular motion

Acceleration has
constant magni-
tude but varying

Velocity and
x, :
a.., » Tacceleration
ot are always
v perpendicular.
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Projectile motion

Velocity and acceleration are perpendicular
only at the peak of the trajectory.

s —
v U
-

v

Ow a

. Acceleration 1s
constant in magnitude

a and direction.

QL
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Nonuniform circular motion

* If the speed varies, the motion 1s nonuniform circular motion.

* The radial acceleration component is still a4 = v*/R, but
there 1s also a tangential acceleration component a,,, that 1s
parallel to the instantaneous velocity.

Speed slowest, a.,y minimum, a,,, zero

Speeding up; @, | Slowing down;
same direction as l

gy OPPOSILE Lo v

\ |
/ N\
, /
Aian @

rad

Speed fastest, a,.,q maximum, d,,, Zero
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Relative velocity

* The velocity of a moving body seen by a particular observer
1s called the velocity relative to that observer, or simply the
relative velocity.

* A frame of reference is a coordinate system plus a time
scale.

* In many situations
relative velocity 1s
extremely important.
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Relative velocity in one dimension

If point P 1s moving relative to reference frame A, we denote
the velocity of P relative to frame 4 as vy, ,.

* If P 1s moving relative to frame B and frame B 1s moving
relative to frame A4, then the x-velocity of P relative to frame

A 18 Vp = Ve t Vol

P (pass\enger) IB (train) YA Vg L Velocity of train
: Cyclist's vgr, relative to cyclist

frame ——
PR Train’s Position of passenger

frame in both frames

G, ..'u ' Xg,
\ - .= &
A A (cychet) O, Op A
o
. , XB/A Xp/p—>
B / o
Xp/A
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FCNIJRIREKE RELATIVE VELOCITY ON A STRAIGHT ROAD

You drive north on a straight two-lane road at a constant 88 km/h.
A truck in the other lane approaches you at a constant 104 km/h
(Fig. 3.33). Find (a) the truck’s velocity relative to you and (b) your
velocity relative to the truck. (¢) How do the relative velocities  Truck (T)

change after you and the truck pass each other? Treat this as a
one-dimensional problem.

Uy/E
UT/Ex = UT/Y=x T UY/Ex B l f
UT/Y-x = UT/E-x - UY/E-x vT/E g You (Y)
= —104 km/h — 88 km/h = —192 km/h

The truck is moving at 192 km/h in the negative x-direction
(south) relative to you.

Uy/T-x = ~UT)yx = —(—192 km/h) = +192 km/h

You are moving at 192 km/h in the positive x-direction (north)
relative to the truck.
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Relative velocity in two or three dimensions

* We extend relative velocity to two or three dimensions by
using vector addition to combine velocities.

A (cyclist)

(c) Relative velocities P (passenger)

(seen from above)

v/,

s/w (¢

UP/B =1.0 m/S
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Relative velocity in two or three dimensions

~Velocity of train

VB ; : .
v relative to cyclist
; - UB/A
YA Train’s

A (cyclist) - Position of passenger

Cyclist’s r Fp/g 10 both frames
frame B

P (passenger)

Relative velocity

I space: .~UP/A=Up/pT Up/a -

Velocity of Velocity of Velocity of
P relative to A P relative to B B relative to A
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SGNIJAICRE N FLYING IN A CROSSWIND

An airplane’s compass indicates that it is headed due north, and
its airspeed indicator shows that it i1s moving through the air at
240 km/h. If there is a 100-km/h wind from west to east, what is

the velocity of the airplane relative to the earth?

SOLUTION

IDENTIFY and SET UP: This problem involves velocities in two
dimensions (northward and eastward), so it is a relative velocity
problem using vectors. We are given the magnitude and direction
of the velocity of the plane (P) relative to the air (A). We are also
given the magnitude and direction of the wind velocity, which is
the velocity of the air A with respect to the earth (E):

Up/a = 240 km/h due north
Ua/g = 100 km/h due east

We’ll use Eq. (3.35) to find our target variables: the magnitude
and direction of velocity Up/g of the plane relative to the earth.

Up/E = Up/a + UaJE

vp/p = V(240 km/h)? + (100 km/h)? = 260 km/h

100 km/h

—> = 23°Eof N
240 km/h

« = arctan (
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6P/A =
240 km/h,
north

east




SUMMARY

F=xi+y]+ zk (3.1)
Hh—r AF
B, = —— =1 (3.2)
H — K At
v = lim AT, (3.3)
Ai—0 At dt '
dx dy dz
== p,=— p,=— (3.4
“Ta YT a B i
. Ur —U; Av o
a., — = .
N At
a= lim LU @ (3.9)
T A—0 At dt '
dv,
a, = ——
' dt
dv,,
i 3.10
YT 510
_ dy,
T
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SUMMARY

x = (vgcosap)t (3.19)
y = (vosinag)t — 3 gt (3.20)

Uy = UpCOS &g (3.21)

U, = UpSinay — gt (3.22)

v2

Gl = E (3.27)
A1°R

Urad — (3.29)
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SUMMARY

Up/a-x = Up/Bx T UB/Ax Up/a

. \ . (3.32) L )
(relative velocity along a line) Up/p = Upp T Up)y
— —_ — 6]’ A 61) / B
Up/a = Up/p + Up/ (3.35) /
(relative velocity in space) ; ~_P (plane)

B (moving air)

. ®— A (ground

®

observer)
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