Asagidaki sorulardan section 5.6'dan 16 ve 18, section 6.1'den 20, 24 ve 27, section
6.2'den 10, 22 ve 38 sorularini ¢bzerek diger problemleri 6grencilere homework olarak
verebilir misin. Cok tesekkurler, kolay gelsin.

Section 5.6, Pages 294-295:
6,10, 14, 16, 18, 19, 20.

Section 6.1, Pages 315-316:
Problems: 2, 10, 18, 20, 24, 27, 28, 29.

Section 6.2, Pages 324-327:
Problems: 6, 10, 14, 22, 28(a), 34, 38.

5.6 page 294

In each of Problems 13 through 17:
(a) Show that x = 0 is a regular singular point of the given differential equation.
(b) Find the exponents at the singular point x = 0.

(c) Find the first three nonzero terms in each of two solutions (not multiples of each other)
aboutx = 0.

16. xy" +y =0

18. (a) Show that
(Inx)y” + ;—y’ +y=0

has a regular singular point at x = 1.
(b) Determine the roots of the indicial equation at x = 1.

oC
(c) Determine the first three nonzero terms in the series Y a,(x — 1)"*" corresponding
to the larger root. Take x — 1 > 0. n=0
(d) What would you expect the radius of convergence of the series to be?

6.1 Page 315

In each of Problems 15 through 20, use integration by parts to find the Laplace transform of
the given function; n is a positive integer and a is a real constant.

20. f(t) = t*sinh at

In each of Problems 21 through 24, find the Laplace transform of the given function.

t, 0<tr<l1
24. f(y=32—t, 1<t<?2

0, 2<t<o



In each of Problems 25 through 28,determine whether the given integral converges or diverges.
o0
27. / t2e' dt
1
6.2 page 324
In each of Problems 1 through 10, find the inverse Laplace transform of the given function.

25 — 3
s +2s + 10

10. F(s) =

In each of Problems 11 through 23, use the Laplace transform to solve the given initial value
problem.

22. y' =2y 42y =e "

38. Suppose that [
gty=[ f(pdr
0

If G(s) and F(s) are the Laplace transforms of g(¢) and f(¢), respectively, show that
G(s) = F(s)/s.



Solutions
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(a) From the equation we see that P(z) = z, Q(z) = 0 and R(z) = 1. The
only zero of P(z) is g = 0, so x¢ is the only singular point of the given
equation.

To check if it is also regular, we have to see if the following limits are finite:

xhrgo(:c — xO)P(.’IZ) = }:m%):vx = 31311%0 = 0(=po),
. R(z) . 1 .
— 20)? — 2 _ — 0(=
xhnéo(x o) @) glcmb "~ jl:n% z = 0(= qo).

Since both of them are finite, g = 0 is a regular singular point of the
initial equation.

(b) Because py = 0 and gp = 0, the corresponding indical equation is
Firy=r(r—1)+por+q=r(r—1)=0,
with roots

r1=1, ro = 0.

(c) By Theorem 5.6.1, the first solution is given by

l—l—Zan(l)x"] =z l—l-Zan(l):v"]. (1)
n=1 n=1

Its coefficients, apart from agp = 1, are determined by the recurrence relation
(8) in the book, which is, in case of r = ry,

x)=2a"

n(n+ Zak (k+Dpp—k + k] =0,Yn €N,  (2)
where -
S paa” = ap(x) = 0 (3)
n=0
and

Z Gz = 2%q(z) = . (4)
n=0

(3) and (4) imply
pn =0, Vn € N,

g1=1, ¢.=0, Vn e Ny \ {1}.



Factoring out a,(0) from (2) gives

n—1
an(l) — k=0 ak(l)[(k + 1)pn—k + Qn—k‘] : Vn € N,
n(n+1)
with first three elements
—ap(p1+ q1) 1
]_ — — — —
a(1) 1-2 2
ap(1) = —L0(P2 +¢2) + a1 (D21 +qu)] -0-3-1 1
2 2.3 6 12’
a5(1) = —La0(ps + d3) + 1(1)(2p2 + g2) + az(1) (31 + ¢1)]
3-4
_ —[0—3-0+ &0+ 1)] 1
12 144"
Therefore, the first solution is
1 1 1 1 1
_ 1_ = 2 L 3 2, Lt 3 1 4
n(z) x( ' TR Tt Tt ) S R R Ve
Acording to the same theorem, since 1 —ry = 1, the second solution is given
by
y2(x) = ayi(z) In[z] + [2|™ |1+ chm)w”]
n=1
=ay(z)In|z] +1+ Z cn(0)2", (5)
n=1
where

a= rli_r)rr}Q(r —r9)an(r), N =r; —ro.

Since N =1 and

_— S al(r + k)py—k + an—]

an(r) = air) = r+ N -1+ N)
_—a(rptq) 1
r(r+1) r(r+1)’
we have ]
a = lim r— =-1
r—0 7’(7’ + ].)

To determine ¢, (0), we can substitute (5) into the initial differential equation.
First, we differentiate (5) two times:

/ o yl(a:) - n—1
Ya(x) = ay(z) In |z[ + a——* ; nea (0)z",

_ i@ p@) | ¢ n—2
yh(z) = ayf(z) In|z| + 2a7 —aT—5+ T;Qn(n — 1)ey(0)z™=.

We also differentiate (1) once:

(o] / o0 (o]
1+ Zan(l)w"} } =1+ Zan(l)x" +z Znan(l)x”_l
n=1 n=1 n=1

=1+ Z(l + n)ay(1)x"”

n=1

Yi(z) = {fv




Now we obtain

o]

/
Ty +yp =1 lay'f In |z| + 2"% - a% + ) n(n = 1)ey(0)2"2

n=2

o0
+ |ay;In|z| + 1+ ch(())

n=1

(o]
=aln|z|(zy] + y1) + 2ay] — a— + Zn (n—1)en(0
0

+1+ icn(O)

“ 24|14 2(1 +n)an(D)a”| — ax|1+ ilan(l)m"] -

+ i?n(n —Dep(0)z™ + 1+ ilcn(O)

=1l+a+a i(l + 2n)an(1)z" + il n(n+ 1)cp+1(0)"

¥ gcn(m

—1+4a+ f:l[a(l +2n)an(1) + n(n + 1)cnt1(0) + cn(0)]2"
f;l (14 20)an(1) + (0 + Dens1 (0) + (0" =0 (6)

~0.

Equating the coefficients of powers of « on both sides in (6), we obtain

(1+2n)an(1) — cn(0)
n(n+1)

cn+1(0) = ,VneN, n>2,

o (20 — Dap_1(1) — cu1(0)

en(0) = n(n —1)

, VneN, n>2.

Since there are no conditions on ¢;(0), we can choose ¢;(0) = 0, which then
implies

3a1(1) —c1(0)  3(—3) 3

20 = 2 T2
Cbag(l)—c(0) 5543 4 7
c3(0) = 3.9 = 3 =5 =13 and
o) T =) T -F _ f 3
e 12 12~ 1728
Therefore, the second solution is
-
yQ(iU) = —y1(33) In |$‘ +1— %xQ + 316$3 B 1§;8x4 L
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(a) From the equation we see that P(z) = Inz, Q(z) = 1 and R(z) =
The only zero of P(x) is g = 1, so ¢ is the only singular point of the given
equation.

To check if it is also regular, we have to see if the following limits are finite:

: Q(x) .. (z—1)3 vHepital . 35 1
fm @) gy =i T T =5
: R(z) . (z—1)% vHépital . 2(z —1)
- 2 - —_— :p _— = =
A, =) ) T Mo e

Since both of them are finite, £g = 1 is a regular singular point of the
initial equation.

(b) Because py = % and gy = 0, the corresponding indical equation is

1 1
F(r) = r{r = 1)+ por+ g0 = r(r = 1) + 37 = r(r — 3).

with roots

1
5, ’7’220.

,rl e

¢) The solution corresponding to the larger root r; = 2 is given by
2
1+ Z an< ) (x—1) ]
= (v — 1/2+Zan( )@—1)s (1)

yi(z) = (x — 1)1/

We will calculate the coefficients a,, (2> by substituting the expression for

y; from (1) into the initial equation. First, we differentiate y; two times,
obtaining

o= Yo S o et

() =31+ Y (4 3) (- g)m(F) -0 E
n=1

The Taylor series for In x around the value xg =1 is

o0

Sy e (@
n=1



Substituting (1), (2), (3) and (4) into the initial equation, we get

- _ nt1 (@ —1)"
;( 1) -
[ S e o Dy
n=1
Fafgte 0 X (s Pz
+ (@ 1)1/2+§an(§)(x—1)n+%:
__%nz::l(_l)nﬂ(x_n) 2

1 1 — 1 1
+ —(x 1)_1/2+— n+ - an| =) (x—1)""2
4 2;::1( 2) 2)
+ (x 1)1/2+Zan<1)(a:—1)"+%
n=1
1 1 1 1)7+3
:_Z(x_l)_§+§(x_l)%—17;( >n+1($n+)2 2
0o n (_l)k' 3 1 1 1
Pt (ke g) (kg )i (3) - 1
+ i(x 1)—1/2 -+ Zal(%) (x — 1)% + %; (n + %)an-kl (%) (x _ 1)71-%-%
+(z 1)1/2+§:an(—)(m—1)"+%
n=1
1 3 (1 1 o= |1 (=)
=g+ gm(g)|E-nie X =




Equating the coefficients of powers of x on both sides in the last equation,
we obtain

§+3a(3) =0
e+ i T (n—k+ 3) (n— k4§ ) an-ra (3)
\+%(n—|— )an+1( )+an( ) 0, Vn € N.

Therefore, we have
a@>__2z__§
N2/~ 83 &

N

and for n =1

el ()=o)
= g5 +5ax(3) =0,

which implies

Therefore, the first solution is

yi1(z) = (x — 1)1/2[1Z(x1)+480(x1)2+...

(d) As expansion of Inz around 1 has radius of convergence equal to 1, y;
is expected to have the same radius of convergence.
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The Laplace transform of f(t) is given by
LIf(t) / f(t)e stdt = / t* sinh(at)e ' dt

= lim / t*sinh(at)e *tdt
0

A—o0
[ wu=t dv=tsinh(at)e sdt] ()
du=dt v= [tsinh(at)e *dt| — *

Now we calculate v with the help of solution of Problem 8:

= / tsinh(at)e *'dt

ut =t dv! = sinh(at)e~stdt
~ |du! =dt o' = [sinh(at)e~"dt = %(e(;:;)t + e_éf:)t)
t _e(a—s)t 6—(a+s)t_ 1 ela—s)t e—(ats)t
2| a—s a-+s 2 a—Ss a-+s
t _e(a—s)t e—(a-l—s)t_ 1| ela—s)t e—(ats)t
"2l a—s a+s | 2|(a—s)? (a+s)?

Returning back to (*) and using some calculations from Problem 17, we
have

+2 (a—s)t —(a+s)t
(¥) = lim <§ [e + <

A

0
1
ela—s)A e—(ats)A
a 5 (a—s5)2  (a+s)?

t
2((a—5)2 (a+s)?
le(a s)t e—(ats)t

(a—s5)2 (a+s)?

A—o0 a— S8 a+s 0
A 4] ela—s)t e—(ats)t
B /0 2l a—s + a+s |
i A2 | gla—s)A e—(ats)A
AN Y2 [ Tazs + a+s
A A
S / telastgy — 1 / te~(@ts)t gt
2(a—s) Jo 2(a+5) Jo
e(a,—s)t 6—(a+s)t

. A
2 (a—s)3+(a—|—s)3 0}
. {A_2 [e(a—s)A e—(at+s)A - é [ ela—s)A - e—(at+s)A
A—oo | 2 2((a—s)? (a+s)?
1 Aela-9A4  gla—s)A 1
_2(a—s)[ a—s _(a—s)2+(a—s)2
1 Ae—(a-f—s)A e—(a-f—s)A 1
"~ 2(a+s) a+s _(a+s)2+(a+s)2
1 e(a—s)A 6—(a+s)A 1 1
+§l(a—s)3+(a+s)3 (a—s)3+(a+s)3

4 [ (a s)t e —(a+s)t

_|_

a— S a-+ s

1
2

}.



The limit exists only for a — s < 0 and a 4+ s > 0, i.e. for s > |a|, and

since e** 54 grows faster than A when A becomes larger, we have
1 1 1 1 1 1 1 1
F(s)=—— ——— — — — =
2(a—s)3 2(a+s)® 2(a—s)2 2(a+s)?
_ 1 r 20° + 6as*  2a(a® + 3s?)
- (a—s)? (a+s)®  [la—s)ats)P  —(s?—a?)?

Therefore, the solution is

a CL2 52
P = s
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The Laplace transform of the given piecewise continuous function is

F(s)|= / f(t)e™tdt = / t-e Stdt + / (2—1t)-e*tdt + / 0-estdt
0 0 1 ;

[u=t dv=eftdt | u=2-t dv=e*dt
T ldu=dt v=—-<= | du=—-dt v=-£="

S S

1 2
—st 1 —st —st 2 —st A
S +/ C_dt—(2-1)° —/ _dt+ lim/ Odt
S 0 S S 1 S A—o00 2
0 1
6_8 e—st 1 6_8 6—st 2
S - + +——| — lim 0
S S S S A—o00
0 1
e—S 1 6_28 e—S
T2 T2 + 2 82
1 —2e 5 +e 28
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Consider the function f: [1,00) — R given by f(t) = f;

Observe that f/(t) = tze—t;%—et = f;(t —2) for all t € [1, 00).

Thus, f'(t) <0 for all t € [1,2], f(2) =0 and f'(t) > 0 for all t € (2, 0)
which gives us that f reaches its minimum value at ¢ = 2 and the minimum

. €
value of fis <.

Since 1 < % we have that 1 < %t for all t € [1,00) and then since

00 b
/ ldt = lim / ldt = lim (t|l1’) = lim (b — 1) = oo we have by the
1 1 b—oo b—oo

b—oo

comparison test that / t~2etdt diverges.
1

6.1 Page 324 Q10

We know that £(e® sin bt) = = al;Q e and L(e® cos bt) = G _Sa;;:_ 2
Using that and that Laplace transform is linear,
25 — 3 25s+2—-5 s+1 5 3

F(s)

T 2425 +10 $2+25+10  (s+1)2+32 3 (s+1)2+32

=2-L(etcos3t) — g - L(e"tsin3t) = L£(2e" cos 3t — ge_t sin 3t)

Inverse Laplace transform of given function is

=

L7H(L(2e cos 3t — ge‘t sin 3t)) = 2e~" cos 3t — %e‘t sin 3¢.
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y' -2y +2y=et y(0)=0, y(0)=1 Question

L{y"} =s*Y (s) —s-y(0) —y'(0) Laplace Transforms needed
L{y'} =s-Y(s)—y(0)

L{y} =Y(s)

L{sin(t)} = =2

L{cos(t)} = .
1

L{ecf(t)} =Y(s—c)

L{e“t} =

3 .
s2Y (s) —s-y(0) —y'(0) —2[s- Y (s) —y(0)] +2Y (s) = Laplace transform both sides

1 Rearrange
s+1

= ?Y(s)—s-0—1-2[s-Y(s)—0]+2Y(s) = slﬁ
1

:s+1

= $?Y(s)—1—2s-Y(s)+2Y(s)
1

L[s2 — _1=
= Y(s)-[s°—25s+2]—1 pon
1 1

= Y= (s+1)(s*—2s+2) + §2 — 2542
4
Let 1 A Bs+C Separate by partial fractions
b (s+1)(s2—-25+2) s+1 e T +2 Multiply both sides by (s + 1)(s* — 25 + 2)

Compare coefficients
Solve simultaneous equations

=1=A(s>-25+2)+(Bs+O)(s+1)

= 1=A4s> —245+2A+ Bs> + Bs+Cs+C
=1=(A+B)s?>+(B+C —-2A)s+24+C
=A+B=0

B+C—-24=0

2+ C =1

= A=-B

= B+C-2(-B)=0

2(-B)+C =1

=B+C+2B=0

—-2B+C=1

=>B——g, A—g C—g

—

(s+1)(s2-2s+2) ‘5 s+1 5
—s+3
52 —2s5+2

Hence,



1 1 1 —5+3 1 Rearrange o
Y(s)= (g) s+1 + (g) 2 _92s+2 + 2 _—25+2 Inverse Laplace
1 1 1 —s5+3 1
= Y(s) (5.s+1+(5).(s—1)2+1+(8—1)2+1
1 1 5—3 .
;‘Y(s)_(5)'[s+1_(s—1)2+1+° (5—1)2+1]
1 1 s—1 2
YO =G Gy Goer)t
50— ]
(s—1)2+1
1 1 s—1
:Y(s)_(5)'[s+1_(s—1)2+1+7‘(s—1)2+1]
=y= (=) e —elcos(t) + Te'sin(t)]
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Since ¢(t) = /t f (1) dt we have that ¢'(t) = f(t) for all t > 0.
Hence £[f(t)] = £ [¢'(#)] = 5L [g()] - 9(0).

Since g(0 / f(r)dr =0, L[f(t)] = F(s) and L][g(t)] = G(s) we have
that F'(s) = sG(s) and then J—l = G(s).



